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A-smooth quantum solutions: A semiclassical method 

T A  Osbornt 
Department of Physics and Astronomy, University of Maryland, College Park, 
Maryland 20742, USA 

Received 17 April 1984 

Abstract. The h + O  semiclassical expansion of Wigner and Kirkwood is obtained for 
quantum systems of finitely many particles. In a d-dimensional Euclidean space Rd without 
boundaries quantum systems defined by a Hamiltonian, H, given as the sum of the negative 
Laplacian perturbed by a potential u(x) are considered. The semiclassical behaviour of 
the kernels of the semigroup family of operators {eCZH: Re z 0) is determined in terms 
of an asymptotic expansion in the variable h. The order of the expansion is proportional 
to the number of bounded derivatives u(x)  supports. The expansion is uniform in Rd X R d  

and accompanied by explicit bounds for the error term. The results are obtained for 
potentials u(x) that are Fourier images of complex bounded measures. 

1. Introduction 

In this paper explicit asymptotic expansions with remainder term bounds are construc- 
ted for the type of semiclassical approximation originating in the work of Wigner 
(1932) and Kirkwood (1933). In spite of the fact that the semiclassical expansion of 
Wigner and Kirkwood has been in active use for more than 50 years, a rigorous 
derivation of the asymptotic nature of this approximation (together with an error 
estimate) has been lacking. 

Suppose H is the generator of time evolution for the N-body problem in non-rela- 
tivistic quantum mechanics in a d-dimensional Euclidean space Rd. Let x be the 
generic point in Rd that determines the position of all N particles. Take u ( x )  to be 
the real-valued local potential of the system, then H is the self-adjoint extension in 
L2(Rd) of the quadratic elliptic differential operator 

(1.1) 

Here Ax is the Laplacian in Rd. If each particle moves in three dimensions then d = 3 N. 
In terms of the rationalised value of Planck's constant fi and the mass m of each 
particle the variable q denotes the quantum scale factor 

H,,, = -qAx + u ( x ) .  

q = fi2/2m. (1.2) 

Throughout this paper it is assumed that u ( x )  is uniformly bounded in Rd. This 
suffices to ensure that H is bounded from below. Consider the analytic semigroup 
defined by H. Let z take values in the open right-half plane Dc @. The family of 
bounded operators on L2(Rd) given by 

{e-ZH: z E D }  (1.3) 
t On leave from the University of Manitoba, Manitoba, Canada. 
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defines the analytic semigroup induced by H. The operators e-rH are integral operators 
with associated Carleman kemels U(x, y ;  z, q )  (Simon 1982, Osborn and Fujiwara 
1983). If z is restricted to the positive real axis ( z  = p > 0) and if u(x) is appropriately 
smooth then the kemels U (  x, y ; p ,  q )  are the fundamental solutions to the heat transport 
equation-or, as it is often referred to in statistical mechanics, the Bloch equation. 
The value of p is proportional to the inverse temperature of the system. Whereas if 
z belongs to the boundary of 0, the imaginary z axis, then one obtains the unitary 
time evolution operators. Let t E R represent time displacement; then the kernels 
U(x, y ; i t / h ,  q )  are the fundamental solutions of the time-dependent Schrbdinger 
equation (Osbom et al 1984). 

The objective of this study is to obtain the q + 0 behaviour of the analytic semigroup 
kernels U(x, y ;  z, q )  realised in terms of an appropriate asymptotic expansion. The 
basic idea is that U(x, y ;  z, q )  admits a factorisation into a term with a rapid oscillation 
as q + 0, multiplied by a function that is slowly varying for q = 0. Specifically, 

Uo(x, y ;  z, q )  = exp(-lx -~1~ /4qz ) / (4 r rqz )~ '~ .  ( 1  5 )  

If Ho is the self-adjoint extension of - q A x  then Uo(x, y ;  z, q )  is the standard diffusion 
kernel associated with e-'"o. Clearly Uo(x, y ;  z, q )  has an essential singularity at q = 0. 
Nevertheless it will be proved that the function F(x, y ;  z, q )  admits an M-term 
asymptotic expansion in powers of q. 

2. Fourier image potentials 

We introduce a class of potentials suitable for describing the N-body problem. Let * 
denote complex conjugation. A complex bounded measure p defined on the Bore1 
field $25' on Rd is said to satisfy the reflection property if for all measurable sets e E $3, 

p ( - e )  = /.(e)*. (2.1) 
Let A * ( R " )  be all complex bounded measures on 3 satisfying the reflection property. 
For each p E A * ( R d )  define the potential U: R d  +R by 

u(x)= Id exp(ik. x)  dF(k).  (2.2) 

Here k. x denotes the scalar product in Rd. The reflection property ensures that u ( x )  
is real valued. Let the set 9* be the Fourier image of A * ( R d ) ,  

a*={ u ( x ) = I R d  e x p ( i k . x ) d p ( k ) : p e A * ( R d )  . I (2.3) 

The elements of the spaces 9* and A * ( R d )  are in a one-to-one correspondence. This 
is a consequence of the uniqueness of the transform (2.2) that asserts u = O  if and 
only if p = 0 (Rudin 1961). A convenient norm for this pair of spaces is provided by 
the total variation lpl of p. By setting 

I b l l  =lPl(Rd), (2.4) 
both 9* and & * ( R d )  become Banach spaces if norm (2.4) is attached. 
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A modification of .fP leads to useful estimates of the partial derivatives of u ( x ) .  
Let M be a positive integer. Define a subset of 9* by 

a*, = {U E 9*: IRd JkJ" d(p ) (k )  <CO for n =0, 1, . . . , M } .  

If U E S*, let the number K = K ( U, M )  be the smallest positive constant such that 

lRd Ikl" dlCLl(k)~-nIICLII, n = o , l ,  . . . ,  M. (2.6) 

The number K is called the bound constant of the potential v in the space 9%. The 
utility of these definitions is seen in the following bound. If 0; is a partial derivative 
in Rd with a multi-index a of length (a(, then for all x 

l ( D , " U ) ( X ) I S  K'u'llPll, la1 s M. (2.7) 

The class of potentials 9* is appropriate for treating the N-body problem since 
there is no assumption of decay as 1x1 + 00. Other problems of physical interest lie in 
this class. For example, scattering from a localised impurity in a crystal lattice and 
the behaviour of a particle in a continuous random potential. This class of potentials 
was introduced by Ito (1961) to study the Feynman path integral representations of 

Later Albeverio and Hldegh-Krohn (1976) have used P for the same purpose. e-irH. 

3. Constructive representation of U(r, y ; z, q )  

This section states the form of the constructive series representation of the semigroup 
kernels found recently by Osborn and Fujiwara (1983), hereafter OF. First we introduce 
some of the notation and the simple functions that appear ubiquitously in this rep- 
resentation. For i = 1, . . . , n let [, E [0, 11 and k, E Rd, set 

O ( t i ,  6) = 541 -t>) (3.1) 

where t< is the minimum of ti and 6, and 6, is the maximum. Define polynomials 
in ki by 

(3.2) 

The following n-fold multiple integrals we abbreviate by 

[ d"p 3 I . . . d p ( k l ) .  . . dp(kn) .  (3.5) 

The subsequent definition, lemma and proposition state the form of the constructive 
representation for U(x, y ;  z, 9). 
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Definition. Let U E a*. For each (z, q )  E b xR', let F(., ; z, q ) :  Rd xRd + C be the 
function given by the series 

where 

B,(x, y ;  z, q )  = (-z)" d"[ d"p exp(-zqa,+ib,). I: 5 (3.7) 

Lemma 1. Let V E  9*. 
(i)  Take Z to be an arbitrary compact subset of D. The series (3.6) is absolutely 

and uniformly convergent in Rd x R d  X Z  xR+. The sum of (3.6), F(x,  y ;  z, q ) ,  has the 
bound 

I F(x, Y ;  z, s)l exp(lzl IIP 11). (3.8) 

(ii) For each (x, y, q )  E R d  x R d  xR+, F(x, y ;  z, q )  is holomorphic in D and con- 
tinuous in 0. For each z E 0, F(x, y ;  z, q )  is continuous in R d  x R d  XR+. 

Proposition. Let U E 9*. Define V(x, y ; z, q )  by equation (1.4). 
(i)  If (z, q )  E D xR+ and f~ L2(Rd), then for a.a. x E R d  

(3.9) 

(ii) Suppose t f 0 and j - ~  L'(Rd) n L2(Rd), then for a.a. x E Rd 

(e-it~f>(x) = IRd dy ~ ( x ,  y ;  it, q)f(y).  (3.10) 

Lemma 1 and the proposition are proved in OF. Related existence results for 
time-evolution kernels have been obtained by Fujiwara (1979, 1980), Kitada (1980, 
1982), and Zelditch (1983). The constructive representation for the kernels of e-zH, 
given in lemma 1 and the proposition, have been recently generalised to include the 
spin-dependent N-body problem, Osborn et al  ( 1984). 

4. The semiclassical expansion 

Let the linear path in Rd between x and y parametrised by [ E [0, 13 be represented by 

f = ( l  -[)x+ty.  (4.1) 

M will always denote a positive integer and be equal to the number of terms appearing 
in the semiclassical expansion. In the following we break up the results about the 
asymptotic expansion of F(x, y ; z, q )  into two parts. The lemma concerns the definition 
and behaviour of the coefficient functions in the expansion. The theorem summarises 
the structure of the expansion and states the remainder term bounds. 

Lemma 2. Suppose v E ,%$M+,) and let K be the associated bound constant of v in 
the space 9;(M+I). Define for m = 1,.  . . , M the coefficient functions T,,,(x, y ;  z): 
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Rd x Rd x C + C by the convergent series 

T,(x,y;z)=exp ( z Jol d t u ( i )  1 , = I  f -[~dn([d"p(u,,)"'eibn. m! 

If Z is an arbitrary compact subset of @, then the series C4.2) is uniformly and absolutely 
convergent in Rd x Rd x I; for M = 1, . . . , M. For each m S M and each fixed coordinate 
pair (x, y)  E Rd xRd, Tm(x, y ;  z )  is an entire function of z. For each fixed z E @, 
T m ( x ,  y ;  z) is jointly continuous in x, y and has the x, y uniform bound 

for m = l ,  . . . ,  M. 

Theorem. Suppose U E 9f(M+l) and let K be the associated bound constant of v in the 
space 9&M+l). The function F(x, y ;  z, q )  has the q + O  M-term asymptotic expansion 

W, Y ;  z, q )  = exp (1 + qTl(x, Y ;  z) +. . .+ q'TM(x, y ;  z)} 

+ E M + l ( X ,  y ;  z, 9 ) .  (4.4) 

For all z E D, the error term E M + l ( ~ ,  y ;  z, q ) ,  has the bound 

This bound is O ( q M + I )  and uniform for all (x, y) e R d  XRd.  

&oo$ We demonstrate lemma 2 and the theorem together. Consider the small q 
expansion of B,. Note that U, 2 0 for all its arguments. Use the exponential expansion 
identity (lemma 5(2) in OF) 

With this identity B, takes the form, 

where 

xexp( -zqan&+l+ibn).  (4.8) 

Since Re z 2 0, C:+' = O(q'+I). With decomposition (4.7) of B,, the series (3.6) 
becomes 
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Simple estimates show that the n = 1 - 00 summation of the M + 2 terms in the large 
brackets in (4.9) are individually absolutely convergent. As an example, consider the 
sum uf the terms Cr+'. This sum constitutes the remainder EM+,. Let us majorise 
the C y + '  series. If 1 3 3. . . L 6, L 0, the function a, has the estimate 

n n  
U ,  G -  k:, 

4 I = ,  

see OF Lemma 5(2). Thus, since U E  9;(M+I) one has 

n 2 ~ 2  M+l 

6 ltPlln(Q) 

(4.10) 

(4.1 1 )  

Furthermore, for z E 

lexp(-zqa,&+i +ibn)J  6 1, (4.12) 

for all ki, ti, and .&+I. Together (4.1 l) ,  (4.12) and (4.8) give 

(4.13) 

The sum over n = 1 --03 of the right-hand side of (4.13) is finite for all IzI <a. In 
particular, one readily finds 

m 

1 /c;+'(x, Y ;  ZY q)l IEM+l(X, Y ;  2, q)1 
n = I  

2 M+I 

s q M + I I Z 1 M c 2 t t p t J  ($) exp(lzl(lp11 exp2(M+l ) ) .  
( M + l ) !  

(4.14) 

The last inequality in (4.14) has employed the estimate 

(4.15) 

where j = 1,2, .  . . . Inequality (4.14) establishes bound (4.5) for the error term E,,,. 
Consider next the coefficient function sums. Apply estimate (3.1 1) to the individual 

terms in the sum (3.2). Obviously, 

Summing (4.16) and again utilising inequality (4.15) leads to the bound (4.3) for 
Tm(x, y ;  z). The series (4.2) defines an entire function of z because the series is 
absolutely convergent for all z E C. In fact (4.16) implies that the series (4.2) is uniformly 
convergent for all x, y. Each term in series (4.2) is continuous in Rd xWd, so it follows 
that the T,,,(x, y ;  z )  is jointly continuous in x and y. 

The semiclassical expansion (4.4) is an immediate consequence of the allowed 
rearrangement of the sums in (4.9). 
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In conclusion it is helpful to give a number of interpretative comments about the 
results found above. Bound estimates (4.3) and (4.5) show that IT,I and IEM+II vanish 
if either 11p11 -P 0 (the weak interaction limit) or 121 + 0 (the high-temperature/short-time 
limit). Equation (4.2) provides us with a definition of the coefficient functions T, for 
all allowed m. Summing series (4.2) may be tedious. An efficient determination of 
the functions T, proceeds as follows. Consider the formal asymptotic expansion 

The T, are then predicted in terms of the coefficient functions S ,  by the cummulant 
formulae 

TI = SI, T2 = S2 + f S:,  T3= S3+SlS2+$:, (4.18) 

etc. As m increases there are a large number of ways in which powers of u ( x )  and its 
partial derivatives may be put together to form S ,  and T,. This is in essence a problem 
in combinatorics. Fujiwara et a1 (1982) have solved this problem by showing that the 
formulae for S ,  may be constructed from a finite sum of fully connected planar graphs. 
Thus one can obtain S ,  and T, directly in a closed algebraic form without having to 
sum (4.2) or solve recursion relations. For example, the formula for T l ( x ,  y ;  z )  is 

~ ~ ( x , y ;  2 )  = -z2 Jot dtI tl(l - ~ v ( i l )  

(4.19) 

with diagonal value 

T,(x,  X ;  Z )  = - ~ z ~ A u ( x ) + & z ~ ( V U ( X ) ) ~ .  (4.20) 

Upon first inspection it may appear artificial to include exp z jA d t v ( i )  as a 
multiplier in front of the coefficient T,. However, the sum over n in (3.2) always 
produces a compensating exponential factor such that simple closed formulae for T, 
like expression (3.19) emerge. In fact, Tm is a polynomial in z whose least power is 
m + 1 and whose greatest power is 3”. For additional expressions for S,  see Fujiwara 
el a1 (1982). 

The traditional form of the Wigner-Kirkwood expansion is obtained if we set x = y 
and z = p > 0 in (4.4) and (1.4), 

X { 1 + qTI (x,  x ; p )  + . . . + qMTM ( x ,  x ; p) } .  (4.21) 

This clearly is a semiclassical expansion in the variable q. If on the other hand we 
examine the time evolution kernels one must set z = it/h. The polynomial z dependence 
in T,(x, y ;  z )  means that these terms do not vanish as h+O. Specifically the error 
term is (for t > 0) 

If h is kept at its physical value, then IEM+ll + 0 as the mass parameter m + 00. Thus 
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for time evolution kernels the asymptotic expansion implied by the theorem for 
F(x, y ; z, q )  is a large mass expansion. 

The salient features of the approximation (4.4) for F(x, y ; z, q )  that our analysis 
exposes and which are responsible for its widespread use in applications are the 
following. 

(i)  The expansion gives a rigorous non-perturbative approximation for the coordin- 
ate space kernels associated with the operators e-zH, z E d 

(ii) The existence of an M-term asymptotic expansion for small q only requires 
that the potential have 2(M + 1) bounded derivatives-no other feature (such as decay 
in 1x1) of the potential is assumed. 

(iii) The expansion (i.e., coefficient functions and error term estimate) is uniform 
in x and y. Furthermore, time and inverse temperature are treated on the same analytic 
footing. The expansion is uniform in z for z confined to any compact subset of 6. 

(iv) One may differentiate (4.4) with respect to either z or x, y and the resultant 
identity is an O(qM")  asymptotic expansion with uniformly bounded error if u(x) is 
sufficiently smooth. For example, if the differential operator is d/dz, then the required 
smoothness of the potential is U E .?F;T(M+2). If the operator is the partial derivative, 
D,", then one requires U E . ?F?(M+l )+ la l .  This stability feature of the expansion means 
that one may determine the short-time or high-temperature behaviour of nearly all 
observables (self-adjoint operators) of interest in quantum mechanics. 

Some of the many practical applications of the Wigner-Kirkwood expansion can 
be found in the review of Singh and Sinha (1981). Because of its central role in 
dynamics most of the mathematical literature has concentrated in obtaining the h + 0 
limit for the fundamental solution of the time-dependent Schrodinger equation defined 
by H,,,. A particularly detailed treatment of small h approximations for U(x, y ;  it/h, 
h2/2m) has been given by Fujiwara (1979, 1980). Fujiwara's expansions assume the 
h + 0 asymptotic structure for the time evolution operator introduced by Birkhoff (1933) 
and Maslov and Fedoriuk (1981). Recently Schrader and Taylor (1984) have derived 
the h + 0 limit of Tr ePPH that corresponds to the dx integral of (4.21) for quantum 
systems whose Hamiltonian H(,) has support on a compact manifold. 
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